Fenske, D., Hachgenei, J. & Ohmer, J. (1985). Angew. Chem. Int. Ed. Engl. 24, 706–709.

- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft Univ. Press.
- Jiang, F.-L., Huang, Z.-Y., Wu, D.-X., Kang, B.-S., Hong, M.-C. & Liu, H.-Q. (1993). Inorg. Chem. 32, 4971–4973.
- Jiang, F.-L., Lei, X.-J., Hong, M.-C., Huang, Z.-Y., Kang, B.-S. & Liu, H.-Q. (1993). J. Organomet. Chem. 443, 229–231.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Massoth, F. E. & Kirby, C. L. (1977). J. Catal. 47, 300.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 1278-1280

Carbonyl- κC -[tris(diphenylphosphinoyl)methanido- $\kappa^2 O, O'$][tris(*o*-tolyl)phosphine- κP]rhodium(I), [Rh(C{P(O)Ph₂}_3)(CO)-{P(*o*-Tol)_3}]

DANIEL M. C. SMIT, STEPHEN S. BASSON, ANDREAS ROODT AND ELIZABETH C. STEYNBERG

Department of Chemistry, University of the Orange Free State, PO Box 339, Bloemfontein 9300, South Africa

(Received 2 November 1994; accepted 10 January 1995)

Abstract

The title compound, $[Rh(C_{37}H_{30}P_3O_3)(C_{21}H_{21}P)(CO)]$, has approximate square-planar coordination geometry around the Rh atom. The significant difference [0.012(3) Å] in the Rh—O bond lengths is due to the slightly different *trans* influence of P(o-Tol)₃ and CO. This suggests that the longer Rh—O bond [*trans* to P(o-Tol)₃] will be preferentially substituted during intramolecular fluxional coordination behaviour of the tripodal ligand.

Comment

This structure determination forms part of an extension of our studies of square-planar rhodium(I) com-

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

plexes (Basson, Leipoldt, Roodt & Preston, 1991) of the form $[Rh(L,L')(CO)(PR_3)]$ (where L,L' is a monoanionic bidentate ligand) to include tripodal ligand sof the form $[Ph_2P(X)][Ph_2P(Y)][Ph_2P(Z)]CH$ (hereafter HTrisXYZ, where X, Y and Z are Group VIB elements). Rhodium(I) and iridium(I) complexes containing the $TrisO_3^-$ ligand have been found to be efficient catalysts for the cyclotrimerization and hydrosilylation of acetylenes (Tanke & Crabtree, 1990). Oxidative addition very often forms part of a catalytic cycle and in this context we are studying the mechanisms of oxidative addition of iodomethane to various Rh^I complexes formulated above. Structural results are sometimes of immense value as an aid in formulating the intimate nature of reaction mechanisms (Leipoldt, Basson, Roodt & Purcell, 1992) and the possible trans influence of $P(o-Tol)_3$ in the title complex, (I), concerned us in view of its unusual reactivity towards a number of common organic solvents and the known fluxional behaviour between the coordinated and uncoordinated arms in bidentate TrisS₃⁻ complexes (Browning, Beveridge, Bushnell & Dixon, 1986).

The Rh atom in (I) displays the usual square-planar geometry with the tripodal ligand coordinated in the bidentate mode *via* two O atoms. The C atom of the carbonyl group is situated 0.343 (4) Å from the plane defined by Rh, O1, O2 and P4. The Rh—P distance of 2.231 (1) Å is within the range 2.232 (2)–2.245 (2) Å

Fig. 1. The molecular structure of the title complex showing 50% probability ellipsoids. Phenyl ring H atoms are omitted for clarity.

Rh **P**1 P2 P3

P4 01

02 **O**3

C01

001

Cl

C2 C3

C4

C5

C6 C7

found for carbonyltriphenylphosphinerhodium(I) complexes containing exclusively oxygen donor atoms in the bidentate ligand (Graham, Lamprecht, Potgieter, Roodt & Leipoldt, 1991). The O1-Rh-O2 ligand bite angle of 84.92 (8)° is relatively small compared to the bite angles found for the sterically more crowded sulfur equivalent, TrisS₃, which are usually greater than 90° (Browning, Dixon, Hilts, Meanwell & Wang, 1991; Grim & Kettler, 1991). The chelating ligand adopts a distorted boat configuration with P1 and O2 at the prows. The methine C atom C1 displays sp^2 character and is displaced by only 0.139 (3) Å from the plane formed by P1, P2 and P3, but the chelate-ring angle P1-C1-P2 deviates significantly from 120°. This indicates that the two coordinating arms of the ligand are 'pulled together' on coordination to the metal, a phenomenon which has also been observed for [Rh(CO)(PPh₃)(TrisS₃)].Me₂CO (Smit, Basson, Roodt & Steynberg, 1994).

Experimental

[Rh(cod)(TrisO₃)] (cod = cyclooctadiene) (Tanke & Crabtree, 1990) was dissolved in tetrahydrofuran and CO gas bubbled through the solution. To the [Rh(CO)₂(TrisO₃)] that formed in situ was added 1.1 equivalents of tris(o-tolyl)phosphine. The title compound (I) was obtained by the addition of hexane. Crystals were obtained from a saturated nitromethane solution at 293 K. The density D_m was measured by flotation in aqueous NaI.

Cr	vstal	data
\sim	Juli	uuuu

Crysial aala		C9	0.2
$[Rh(C_{37}H_{30}P_{3}O_{3})(C_{21}H_{21}P)-$	Cu $K\alpha$ radiation	C10	0.1
(CO)]	$\lambda = 1.5418 \text{ Å}$	C11	0.0
M = 1050.78	Cell parameters from 25	C12	0.0
Trialinia	reflections	C13	0.1
Inclinic Di		C14	0.5
<i>P</i> 1	$\theta = 30-40^{\circ}$	CIS	0.5
a = 11.069(2) A	$\mu = 4.309 \text{ mm}^{-1}$	C16	0.0
b = 14.426(3) Å	T = 293 (2) K		0.7
c = 16.561 (4) Å	Rectangular	C18	0.1
$\alpha = 81.64(2)^{\circ}$	$0.44 \times 0.12 \times 0.10$ mm	C20	0.3
$\beta = 105 10 (2)^{\circ}$	Vellow	C21	0.1
p = 103.19(2)	Tenow	C22	0.1
$\gamma = 94.05(2)^{\circ}$		C23	0.1
$V = 2523.5(9) \text{ A}^3$		C24	0.2
Z = 2		C25	0.3
$D_r = 1.383 \text{ Mg m}^{-3}$		C26	0.2
$D_{\rm m} = 1.372 {\rm Mg}{\rm m}^{-3}$		C27	0.3
		C28	0.4
Data sellesting		C29	0.3
		C30	0.1
Syntex <i>P</i> 1 diffractometer	6471 observed reflections	C32	0.1
$\theta/2\theta$ scans	$[l > 2\sigma(l)]$	C33	0.1
Absorption correction:	$\theta_{\rm max} = 57.46^{\circ}$	C34	0.2
refined from ΔF	$h = 0 \rightarrow 12$	C35	0.3
(CSD) Alcolard Grin	$k = 15 \times 15$	C36	0.4
(CSD; Akselrud, Grin,	$k = -13 \rightarrow 13$	C37	0.3
Zavalii, Pecharsky &	$l = -18 \rightarrow 1/$	C38	0.8
Fundamensky, 1989)	3 standard reflections	C39	0.9
$T_{\min} = 0.379, T_{\max} =$	monitored every 100	C40	1.0
0.703	reflections	C41	1.0
6574 measured reflections	frequency: 60 min	C42	0.9
6574 independent reflections	interactive decover $< 1\%$	C43	0.0
03/4 independent renections	mensity decay: $< 1\%$	C44	0.3

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0700P)^2]$
R(F) = 0.0359	+ 1.2000 <i>P</i>]
$wR(F^2) = 0.0973$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.044	$(\Delta/\sigma)_{\rm max} = 0.335$
6471 reflections	$\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$
617 parameters	$\Delta \rho_{\rm min} = -0.98 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated using a	Extinction correction: none
riding model with an	Atomic scattering factors
overall $U_{iso} = 0.084 (2) \text{ Å}^2$	from International Tables
	for Crystallography (1992,
	Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

isotropic dis	spiacement p	urumeters (A)
$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$			
x	у	Ζ	U_{eq}
0.57963 (2)	0.68356 (2)	0.35755 (1)	0.04101 (11)
0.30729 (7)	0.75807 (6)	0.26057 (5)	0.0446 (2)
0.40306 (7)	0.62349 (6)	0.18377 (5)	0.0434 (2)
0.22506 (8)	0.77651 (6)	0.06800 (5)	0.0494 (2)
0.68375 (7)	0.77468 (5)	0.45275 (5)	0.0417 (2)
0.4321 (2)	0.7751 (2)	0.32352 (14)	0.0506 (5)
0.4576 (2)	0.59794 (14)	0.27820 (13)	0.0463 (5)
0.0876 (2)	0.7575 (2)	0.0535 (2)	0.0649 (7)
0.7069 (3)	0.6076 (2)	0.3755 (2)	0.0497 (8)
0.7851 (3)	0.5567 (2)	0.3811 (2)	0.0792 (8)
0.3199 (3)	0.7258 (2)	0.1650 (2)	0.0459 (7)
0.2234 (3)	0.8656 (2)	0.2440 (2)	0.0526 (8)
0.2919 (4)	0.9477 (3)	0.2625 (3)	0.0675 (10)
0.2316 (5)	1.0305 (3)	0.2532 (3)	0.0899 (14)
0.1028 (6)	1.0315 (4)	0.2275 (3)	0.095 (2)
0.0350 (5)	0.9511 (4)	0.2099 (3)	0.0844 (13)
0.0931 (4)	0.8679 (3)	0.2181 (3)	0.0673 (10)
0.2175 (3)	0.6701 (2)	0.3114 (2)	0.0501 (8)
0.2560 (4)	0.6466 (3)	0.3980 (2)	0.0613 (9)
0.1913 (5)	0.5790 (3)	0.4384 (3)	0.0752 (12)
0.0878 (5)	0.5349 (3)	0.3943 (3)	0.0820 (14)
0.0463 (4)	0.5581 (3)	0.3079 (3)	0.0807 (13)
0.1120 (3)	0.6259 (3)	0.2658 (3)	0.0644 (10)
0.5342 (3)	0.6366 (2)	0.1361 (2)	0.0470 (7)
0.5627 (4)	0.5736 (3)	0.0891 (2)	0.0625 (9)
0.6737 (4)	0.5842 (3)	0.0641 (3)	0.0763 (12)
0.7584 (4)	0.6555 (3)	0.0877 (3)	0.0751 (12)
0.7315 (4)	0.7190 (3)	0.1347 (2)	0.0680(10)
0.6199 (3)	0.7101 (3)	0.1575 (2)	0.0570 (9)
0.3109 (3)	0.5194 (2)	0.1519(2)	0.0491 (8)
0.1895 (4)	0.5215 (3)	0.1042 (2)	0.0668 (10)
0.1224 (4)	0.4379(3)	0.0885 (3)	0.0869 (14)
0.1754 (4)	0.3534 (3)	0.1201 (3)	0.0792 (12)
0.2965 (4)	0.3507 (3)	0.1690 (3)	0.0738 (11)
0.3638 (4)	0.4334(3)	0.1843(2)	0.0628 (9)
0.2617(3)	0.9016 (2)	0.0568 (2)	0.0516 (8)
0.3805 (3)	0.9391 (3)	0.0862 (2)	0.0611 (9)
0.4051 (4)	1.0342 (3)	0.0749(3)	0.0739(12)
0.3103 (4)	1.0939 (3)	0.0344 (3)	0.0792(12)
0.1919(4) 0.1670(4)	1.0580 (5)	0.0039(3)	0.0639(13)
0.10/9 (4)	0.9023(3)	0.0140(3)	0.0090(11)
0.2703(3)	0.7373(2)	-0.0108(2)	0.0513 (8)
0.1920 (4)	0.0629(3)	-0.0702(2)	0.0095(10)
0.2255 (5)	0.0328(3)	-0.1574(3)	0.0317(13)
0.3370(3)	0.0771 (3)	-0.1018(3)	0.0735 (11)
0.4214(4) 0.2011(3)	0.7517(3)	-0.0340(2)	0.0619 (9)
0.3311 (3)	0.7437(2)	0.5212(2)	0.0441(7)
0.0307 (3)	0.7443(2)	0.4877(2)	0.0465(7)
1.0583 (3)	0.7220(2)	0.5442(2)	0.0583 (9)
1 0719 (3)	0 7007 (3)	0.6292(3)	0.0659 (10)
0.9707(4)	0.7011(3)	0.6618 (2)	0.0661 (10)
0.8544 (3)	0.7226(2)	0.6084(2)	0.0552 (8)
0.5842(3)	0.7792 (2)	0.5247(2)	0.0453 (7)
0.0072 (0)			

C45	0.5398 (3)	0.8649 (3)	0.5317 (2)	0.0601 (9)
C46	0.4603 (4)	0.8705 (3)	0.5823 (3)	0.0764 (12)
C47	0.4216 (4)	0.7908 (3)	0.6254 (3)	0.0730 (11)
C48	0.4615 (3)	0.7059 (3)	0.6178 (2)	0.0613 (9)
C49	0.5435 (3)	0.6968 (2)	0.5686 (2)	0.0487 (8)
C50	0.7141 (3)	0.8953 (2)	0.4052 (2)	0.0492 (8)
C51	0.7871 (3)	0.9648 (2)	0.4486 (3)	0.0568 (9)
C52	0.8204 (4)	1.0454 (3)	0.4002 (3)	0.0734 (12)
C53	0.7825 (4)	1.0583 (3)	0.3143 (4)	0.0797 (13)
C54	0.7060 (4)	0.9927 (3)	0.2717 (3)	0.0733 (11)
C55	0.6726 (3)	0.9117 (3)	0.3179 (2)	0.0590 (9)
C56	0.9394 (3)	0.7715 (3)	0.3957 (2)	0.0598 (9)
C57	0.5803 (4)	0.5997 (2)	0.5647 (2)	0.0643 (10)
C58	0.8314 (4)	0.9598 (3)	0.5425 (3)	0.0778 (12)

Table 2. Selected geometric parameters (Å, °)

	0	r	(, /
Rh-C01	1.783 (3)	P2	1.521 (2)
Rh-O1	2.082 (2)	P2C1	1.742 (3)
Rh—O2	2.094 (2)	P303	1.489 (2)
Rh—P4	2.2313 (10)	P3C1	1.761 (3)
P1—O1	1.526 (2)	C01-001	1.151 (4)
P1C1	1.755 (3)		
C01-Rh-O1	174.02 (12)	O3—P3—C1	116.56 (15)
C01—Rh—O2	92.70(12)	P1—O1—Rh	124.27 (13)
O1RhO2	84.92 (8)	P2—O2—Rh	125.43 (12)
C01-Rh-P4	93.69 (11)	O01-C01-Rh	174.8 (3)
O1RhP4	89.38 (7)	P2-C1-P1	110.2 (2)
O2—Rh—P4	170.38 (6)	P2-C1-P3	127.1 (2)
O1-P1-C1	114.76 (14)	P1C1P3	120.7 (2)
O2-P2-C1	109.71 (14)		• •

Data collection and cell refinement: Syntex $P\bar{1}$ software. Structure solution: *SHELXS86* (Sheldrick, 1990) to obtain the position of the heavy atom and *SHELXL93* (Sheldrick, 1993) to solve the structure *via* successive Fourier maps. Structure refinement: *SHELXS86*. Molecular graphics: *ORTEP*II (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, bond distances and angles involving non-H atoms and least-squares-planes data have been deposited with the IUCr (Reference: MU1160). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Akselrud, L. G., Grin, Yu. N., Zavalii, P. Yu., Pecharsky, V. K. & Fundamensky, V. S. (1989). CSD Program Package. XII European Crystallographic Meeting, Moscow, Collected Abstracts 3, 155.
- Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1991). Acta Cryst. C47, 1961–1963.
- Browning, J., Beveridge, K. A., Bushnell, G. W. & Dixon, K. R. (1986). Inorg. Chem. 25, 1987–1992.
- Browning, J., Dixon, K. R., Hilts, R. W., Meanwell, N. J. & Wang, F. (1991). J. Organomet. Chem. 410, 389-401.
- Graham, D. E., Lamprecht, G. J., Potgieter, I. M., Roodt, A. & Leipoldt, J. G. (1991). Transition Met. Chem. pp. 193-195.
- Grim, S. O. & Kettler, P. B. (1991). Inorg. Chem. Acta, 185, 57-61.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Leipoldt, J. G., Basson, S. S., Roodt, A. & Purcell, W. (1992). Polyhedron, 11, 2277-2284.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Smit, D. M. C., Basson, S. S., Roodt, A. & Steynberg, E. C. (1994). *Rhodium Express*. In the press.
- Tanke, R. S. & Crabtree, R. H. (1990). J. Am. Chem. Soc. 112, 7984–7989.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 1280-1282

A Dinuclear Palladium Compound, $[Pd_2(PPh_3)_2(SC_2H_4S)_2]$

R. CAO, M. HONG,* F. JIANG AND H. LIU

Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, Fuzhou, Fujian 350002, People's Republic of China

(Received 18 August 1994; accepted 23 December 1994)

Abstract

The title compound, $bis(\mu-1,2\text{-ethanedithiolato-}S,S':S)$ bis[(triphenylphosphine)palladium(II)], is a dimer where the Pd atoms are linked by two S atoms, one from each SC₂H₄S²⁻ ligand; each Pd atom is four-coordinate (one P and three S atoms) with a distorted square-planar geometry. The Pd...Pd distance is 3.038 (2) Å, and the average Pd—S and Pd—P distances are 2.332 (5) and 2.281 (5) Å, respectively.

Comment

The nickel group compounds with mixed sulfur and phosphine ligands have attracted attention because of their relevance and importance to a wide variety of chemical and industrial systems. Up to now, some dinuclear compounds with mixed thiolate and phosphine ligands, such as [Pd₂(SC₆F₅)₂(PPh₃)₂] (Fenn & Segrott, 1972), [Pt₂(SCH₂Ph)₄(PMePh₂)₂] (Bird, Siriwardane, Lai & Shaver, 1982) and [{Pt₂(SCH₂CH₂CMe= $CH_{2}_{2}_{2}(PPh_{3})_{2}I_{2}$] (Abel *et al.*, 1990), have been structurally characterized. We have recently reported dinickel compounds: [Ni₂(PPh₃)₂(SC₂H₄S)₂] (Cao, Huang, Lei, Hong & Liu, 1992) and [Ni₂(PPh₃)₂(SC₃H₆S)₂] (Cao, Huang, Lei, Kang, Hong & Liu, 1992). Here, we report the crystal structure of [Pd₂(PPh₃)₂(SC₂H₄S)₂], (I), which is isomorphic with $[Ni_2(PPh_3)_2(SC_2H_4S)_2]$ and consists of two palladium quadrilaterals sharing a common edge.

The two Pd atoms are bridged by two S atoms, one from each $SCH_2CH_2S^{2-}$ ligand. Each Pd atom is surrounded by one P and three S atoms in an approximately square-planar arrangement. Fig. 1 shows the structure with the atomic numbering scheme.